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Abstract- Modularity and centrality properties in graphs is an area of research that is becoming increasingly important with growing 
applications in analysing big data, especially social network data, computation for biology, communication network optimization and 
design, VLSI, etc. to name a few. We want the network to have community structure. At the same time we also want a network to be 
decently connected so that it can withstand certain amount of failures. We can measure how well a network is connected by its 
Cheeger constant. In this work in our search for ways to test the modularity properties in networks we focused on possible 
relationships between the Cheeger constant of a graph and modularity. Although modularity is a local graph property and Cheeger 
constant is a global graph property, it turns out that there is a relation between them. Low Cheeger constant means that the graph is 
weakly connected. Such graphs are more likely to have community structure. A paper by Gregory Gauthier on ”Graph Fortresses 
and Cheeger Values” proves that any network having Cheeger constant less than 1 has positive modularity. They introduced graph 
fortress and cellular automaton to prove the result. First they proved that any graph having Cheeger constant less than 1 will have a 
double fortress in it. Subsequently, another result of theirs states that any graph with non-trivial double fortress will have a partition 
with positive modularity. In this document we first prove that any minimal Cheeger set is always internally connected. This gives us a 
lower bound on number of edges in a minimal Cheeger set with respect to its cardinality. We then prove that if a graph has two 
disjoint weak fortress then the graph will also have a double weak fortress. Using these two results we prove that if all minimal 
Cheeger set having Cheeger value e  have cardinality at least 2/2-e then the graph has a non-trivial double weak fortress. Finally we 
prove that the presence of a non-trivial double weak fortress gives us a partition of vertices of graph with non-negative modularity. 
 
Index Terms- Cheeger Constant, Cheeger set, Cheeger value, Graphs, Graph fortress, Modularity, Connectivity 
 

——————————      —————————— 
 

1    INTRODUCTION 
Modularity and centrality properties in graphs 
is an area of research that is becoming 
increasingly important with growing 
applications in analysing big data, especially 
social network data, computation for biology, 
communication network optimization and 
design, VLSI, etc. to name a few. 

We want the network to have community  
structure. At the same time we also want a 
network to be decently connected so that it 
can withstand certain amount of failures. We 
can measure how well a network is 
connected by its Cheeger constant (see 
Section 2).  
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In this work in our search for ways to test the 
modularity properties in networks we focused 
on possible relationships between the 
Cheeger constant of a graph and modularity. 
Although modularity is a local graph property 
and Cheeger constant is a global graph 
property, it turns out that there is a relation 
between them. Low Cheeger constant means 
that the graph is weakly connected. Such 
graphs are more likely to have community 
structure. 
 
A paper by Gregory Gauthier on "Graph 
Fortresses and Cheeger Values"[2] proves 
that any network having Cheeger constant 
less than 1 has positive modularity. They 
introduced graph fortress and cellular 
automaton to prove the result(see the Section 
\ref{Definitionsec}). First they proved that any 
graph having Cheeger constant less than 1 
will have a double fortress in it. 
 
Theorem 1.1 Let G be a finite graph with hG 
< 1 or hG = 1 and dv ≥ 2 for all v ∈ V(G) then 
G has a non-trivial double fortress. 
 
Subsequently, another result of theirs states 
that any graph with non-trivial double fortress 
will have a partition with positive modularity. 
 
Theorem 1.2 Let G be a finite graph, and F 
⊆V(G) a double fortress. Then the modularity 
of the G based on F is nonnegative, with the 
modularity being zero only if F is trivial or if 
each vertex has the same number of 
neighbors in its own partition as in the other 
partition. 
 
We observed that in the proof of second 
result, the conditions are stronger than 
needed. A double fortress is same as strong 
community. Even a graph possessing double 
weak fortress (weak community) 

will also have a partition with positive 
modularity and hence the community 
structure. For example the graph in the Figure 
1 has double weak fortress but no double 
fortress in it. 
 
 

 
Fig1. A small network with weak community 
and no strong community 
 
Since we weakened the conditions in the 
second result, we attempted to get better 
conditions in first result. i.e. we now only need 
the graph to have a weak double fortress 
instead of double fortress. It turns out that a 
graph with Cheeger constant up to 2 with 
certain cardinality conditions on minimal 
Cheeger set(see the definitions section 
Section 2) will have a double weak fortress. 
Also we don't need to use Cellular Automaton 
to prove our results. Our results are mainly 
based on the properties of weak fortress 
(weak community) and minimal Cheeger sets.  
 
In this document we first prove that any 
minimal Cheeger set is always internally 
connected. This gives us a lower bound on 
number of edges in a minimal Cheeger set 
with respect to its cardinality. We then prove 
that if a graph has two disjoint weak fortress 
then the graph will also have a double weak 
fortress. Using these two results we prove 
that if all minimal Cheeger set having 
Cheeger value 𝜖have cardinality at least 
2

2−𝜖
then the graph has a non-trivial double 

weak fortress. modularity. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015                                                      1123 
ISSN 2229-5518  

IJSER © 2015 
http://www.ijser.org 

  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015                                                      1124 
ISSN 2229-5518  

IJSER © 2015 
http://www.ijser.org 

 
 

Finally we prove that the presence of a non-
trivial double weak fortress gives us a 
partition of vertices of graph with non-
negative modularity. 
 
2. NOTATIONS AND DEFINITIONS 
 
2.1. NOTATIONS 
We will use the following notations for this 
document. 
 

● G -> Finite Simple Graph 
● V(G) -> Vertex set of graph G 
● E(G) -> Edge set of graph G 
● AC -> Complement of set A 
● N -> |𝑉(𝐺)| 
● 𝛿(𝐴,𝐵)-> Number of edges with one 

end point in A and the other in B. 
Where A and B are disjoint subsets of 
V(G) 

● dv -> Degree of vertex v 
 
2.2. DEFINITIONS 
Among many similar or equivalent sets of 
definitions, we have mainly followed [1]. 
 
Definition If A is a nonempty proper subset 
of V(G), then we define the Cheeger Value of 
A as  
 
ℎ𝐺(𝐴)  

=
𝛿(𝐴 ,𝐴𝐶)

𝑚𝑖𝑛(|𝐴| , |𝐴𝐶|
                                             (1) 

 
We note that hG(A) = hG(AC). 
 
Definition Cheeger Constant of G is defined 
as hG = min hG(A), (𝛷 ⊂ A ⊂ V(G) )  
 
Definition If A is a nonempty proper subset 
of V(G), then A is minimal cheeger set if for 
all 𝛷 ⊂ 𝐵 ⊂ 𝐴,hG(B) > hG(A). 
 
 

Modularity[3] 
 
Modularity is a concept in network theory that 
describes how well a graph can be broken 
into individual strongly-connected modules. 
M. E. J. Newman quantifies the modularity Q 
as follows: 
 

𝑄 

=
1

4𝑚
�

𝑖,𝑗 ∈𝑉(𝐺)

�𝐴 𝑖𝑗  

−  
𝑑 𝑖 ,𝑑 𝑗

2𝑚
�𝑠𝑖𝑠 𝑗                       (2) 

 
where A is the adjacency matrix and si is +1 
or -1 depending on the sign of vertex i. m is 
the number of edges in G. 
 
The motivation is to indicate partitions of 
graphs in which there are more intramodular 
edges and fewer intermodular edges than 
would be expected. A positive value indicates 
a clear break between modules as indicated 
by the partition, while a negative value 
indicates a bad choice of partition. Further, 
the trivial partition where all the vertices are in 
one partition has zero modularity, which 
allows zero to be the baseline. 
 
Definition If A is a subset of V(G), then A is a 
fortress (strong Community) if for all v ∈ A, 
𝛿({𝑣 ,𝐴 −  {𝑣} ≥ 𝛿({𝑣} ,𝐴 𝐶). A is a double 
fortress if both A and AC are fortresses. 
 
 
Definition 
If A is a subset of V(G), then A is a weak 
fortress (weak Community) if 
∑𝑣∈𝐴 𝛿({𝑣} ,𝐴 − {𝑣}) ≥
∑𝑣∈𝐴 𝛿({𝑣} ,𝐴 𝐶) = 𝛿(𝐴,𝐴 𝐶) A is a 
double weak fortress if both A and AC are 
weak fortresses. 
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Part 2: 
Given that A and B are two disjoint weak 
fortresses in G, let  
𝛿(𝐴,𝐴 𝐶)= e1 and 𝛿(𝐵,𝐵 𝐶)= e2. 
 
Since 𝐴 ∩ 𝐵 = 𝛷 ⇒ 𝐴 ⊂ 𝐵 𝐶. 
 
Without loss of generality let e1 ≥ e2. 
 

�
𝑣∈𝐵 𝐶

𝛿({𝑣},𝐵 𝐶 − {𝑣} 

≥�
𝑣∈𝐴

𝛿({𝑣},𝐴 − {𝑣}  ≥ 𝛿(𝐴,𝐴 𝐶) =  𝑒 1

> 𝑒 2 
= 𝛿(𝐵 𝐶 ,𝐵) 

⇒BC is a weak fortress and B is a required 
non-trivial double weak fortress. 
 
Theorem 3.3 If G is a finite graph with 
cheeger constant 𝜖 <  2 with all minimal 
cheeger sets having cheeger value 𝜖 have 
cardinality at least 2

2−𝜖
 then the graph has a 

non-trivial weak fortress and a non-trivial 
double weak fortress. 
 
Proof: 
Let A be a minimal cheeger set with smallest 
cardinality having cheeger value 𝜖. 
 
Let |V(G)| = N  
|A|= n ⇒ n ≤ N/2. 

ℎ 𝐺(𝐴) =
𝛿(𝐴,𝐴 𝐶)

𝑛
 = 𝜖 

 
By Theorem 3.1 A is internally connected. 
⇒Number of internal edges in A ≥ 𝑛 − 1 

⇒�
𝑣∈𝐴

𝛿({𝑣},𝐴 − {𝑣})  ≥ 2𝑛 − 2 

and 𝛿(𝐴,𝐴 𝐶) = 𝑛𝜖 
also 𝑛 ≥ 2

2−𝜖
 

⇒ 2𝑛 − 𝑛𝜖 ≥ 2 
⇒ 2𝑛 − 2 ≥ 𝑛𝜖 

⇒�
𝑣∈𝐴

𝛿({𝑣},𝐴 − {𝑣}) ≥ 𝛿(𝐴,𝐴 𝐶) 

Hence A is a non-trivial weak fortress. 
Also note that hG(A) = hG(AC) = 𝜖. Hence 
∃𝐵 ⊆ 𝐴 𝐶  such that hG(B) = 𝜖 and B is a 
minimal cheeger set. Let |B| = m. 
 
Case 1: 

𝑚 ≥ 𝑁/2 ≥ 𝑛 

�
𝑣∈𝐴 𝐶

𝛿({𝑣},𝐴 𝐶 − {𝑣} 

≥�
𝑣∈𝐵

𝛿({𝑣},𝐵 − {𝑣} ≥ 2𝑚 − 2 ≥ 2𝑛 − 2

≥ 𝑛𝜖 
= 𝛿(𝐴 𝐶 ,𝐴) 

⇒AC is a weak fortress and A is a required 
non-trivial double weak fortress. 
 
Case 2: 
m < N/2 
⇒Number of internal edges in B ≥ 𝑚− 1 

⇒�
𝑣∈𝐵

𝛿({𝑣},𝐵 − {𝑣})  ≥ 2𝑚− 2 

and 𝛿(𝐵,𝐵 𝐶) = 𝑚𝜖 
also 𝑚 ≥ 2

2−𝜖
 
⇒ 2𝑚 −𝑚𝜖 ≥ 2 
⇒ 2𝑚 − 2 ≥ 𝑚𝜖 

⇒�
𝑣∈𝐵

𝛿({𝑣},𝐵 − {𝑣}) ≥ 𝛿(𝐵,𝐵 𝐶) 

Hence B is a non-trivial weak fortress and 
clearly 𝐴 ∩ 𝐵 = 𝛷. Hence by Lemma 3.2 G 
has a non-trivial double weak fortress.  
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4. THE RELATION TO MODULARITY 
 
From the definition, weak fortresses are 
strongly connected subsets of vertices. It 
should come as no surprise that double weak 
fortresses are a good choice for partitioning 
vertices into modules. The following theorem 
illustrates this property. 
 
Theorem 4.1 Let G is a finite graph and  
𝐹 ⊆ 𝑉(𝐺) be a double weak fortress. Then the 
modularity of G based on F is nonnegative 
with modularity being zero if and only if F is 
trivial or sum of all internal degrees is equal to 
sum of all external degrees in F or FC. 
 
Proof: 
For any 𝑣 ∈ 𝐴 ⊆ 𝑉(𝐺)define advantage of v in 
A by 𝑎𝑑𝑣(𝑣) = 𝛿({𝑣},𝐴 − {𝑣}) − 𝛿({𝑣},𝐴 𝐶) 
Further if 𝐵 ⊆ 𝐴then 𝑎𝑑𝑣(𝐵) = ∑𝑣∈𝐵 𝑎𝑑𝑣(𝑣) 
Note that if A is a weak fortress then 
𝑎𝑑𝑣(𝐴) ≥ 0. 
Rewriting equation (2) 

𝑄 =
1

4𝑚
�

𝑖,𝑗 ∈𝑉(𝐺)

�𝐴 𝑖𝑗𝑠𝑖𝑠 𝑗  

−  
𝑑 𝑖 ,𝑑 𝑗𝑠𝑖𝑠 𝑗

2𝑚
�           (10) 

 
Fix an arbitrary 𝑖 ∈ 𝑉(𝐺). Let 𝑖 ∈ 𝐹 
(alternatively 𝑖 ∈ 𝐹 𝐶). Then the first term 
corresponds to how many more neighbors of i 
are in F than FC (alternatively, in FC than F). 
But this is just adv(i). Summing over all 𝑖 ∈ 𝐹 
and 𝑖 ∈ 𝐹 𝐶 gives 
 

𝑄 =
1

4𝑚
�𝑎𝑑𝑣(𝐹) + 𝑎𝑑𝑣(𝐹 𝐶)

−  
𝑑 𝑖 ,𝑑 𝑗𝑠𝑖𝑠 𝑗

2𝑚
�        (11) 

 
Now let 𝑋 = ∑𝑣∈𝐹 𝑑 𝑣and 𝑌 =
∑𝑢∈𝐹 𝑑 𝑢.  
Hence X + Y = 2m and  
X - Y = ∑𝑣∈𝐹 𝑑 𝑣 - ∑𝑢∈𝐹 𝑑 𝑢.  
 

Hence (X-Y)2=∑𝑖,𝑗∈𝑉(𝐺) 𝑑 𝑖 ,𝑑 𝑗𝑠𝑖𝑠 𝑗 

𝑄 =
1

4𝑚
�𝑎𝑑𝑣(𝐹) + 𝑎𝑑𝑣(𝐹 𝐶)

−  
(𝑋 − 𝑌) 2

2𝑚
�          (12) 

 
Let 𝑍 = 𝛿(𝐹,𝐹 𝐶) and for each v∈F 

𝑑 𝑣 = 𝛿({𝑣},𝐹 − {𝑣}) + 𝛿({𝑣},𝐹 𝐶) 
𝑎𝑑𝑣(𝑣) = 𝛿({𝑣},𝐹 − {𝑣}) − 𝛿({𝑣},𝐹 𝐶) 

⇒ 𝛿({𝑣},𝐹 𝐶) =
1
2

(𝑑 𝑣 − 𝑎𝑑𝑣(𝑣)) 
 
sum over all v∈F  

⇒ 𝑍 =
1
2

(𝑋 − 𝑎𝑑𝑣(𝐹)) 
 
similarly for all 𝑣 ∈ 𝐹 𝐶  

𝛿({𝑣},𝐹 ) =
1
2

(𝑑 𝑣 − 𝑎𝑑𝑣(𝑣)) 
sum over all v∈FC 

⇒ 𝑍 =
1
2

(𝑌 − 𝑎𝑑𝑣(𝐹 𝐶)) 

⇒ 𝑍 =
1
2

(𝑋 − 𝑎𝑑𝑣(𝐹)) =
1
2

(𝑌 − 𝑎𝑑𝑣(𝐹 𝐶)) 
⇒ 𝑋 − 𝑌 = 𝑎𝑑𝑣(𝐹) − 𝑎𝑑𝑣(𝐹 𝐶) 

 
Since F and FC are weak fortresses, adv(F) 
and adv(FC) are non negative.  
 
𝑎𝑑𝑣(𝐹) + 𝑎𝑑𝑣(𝐹 𝐶)  

≥ |𝑎𝑑𝑣(𝐹) − 𝑎𝑑𝑣(𝐹 𝐶)|    (13) 
 
Equality holds if and only if either advantage 
is zero i.e. F is trivial or sum of all internal 
degrees is equal to sum of all external 
degrees in F or FC 
 
Also  

2𝑚 = 𝑋 + 𝑌 ≥ |𝑋 − 𝑌|
= |𝑎𝑑𝑣(𝐹) − 𝑎𝑑𝑣(𝐹 𝐶)| (14) 

with equality holding if and only if X or Y is 
zero. 
 
by equation (13) and (14) 

2𝑚(𝑎𝑑𝑣(𝐹) + 𝑎𝑑𝑣(𝐹 𝐶))  
≥ (𝑎𝑑𝑣(𝐹) − 𝑎𝑑𝑣(𝐹 𝐶)) 2  

= (𝑋 − 𝑌) 2                                                (15) 
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hence by equation (12)  
𝑄 ≥ 0with equality holding if and only if F is 
trivial or sum of all internal degrees is equal to 
sum of all external degrees in F or FC. 
 
5. CONCLUSION 
 
When study of connectivity and expansion in 
a sparse graph is combined with study of 
modularity in a graph we get some rewarding 
results. Apparently, the two properties, 
though not completely orthogonal nor 
diametrically opposite, are at variance with 
each other. However, surprising connections 
are exposed once we delve deeper into their 
structure and dynamics. It turns out that the 
Cheeger constant is too much of an 
aggregate global parameter, compressing too 
much information into a single number, losing 
structural information in the process. 
 
Work by Sitabhra Sinha et al.[4] indicates that 
modularity is more ubiquitous in naturally 
arising networks than previously recognized. 
Our results strengthen this work by showing 
that indeed, graphs with high Cheeger 
constant also may be modular. Our results 
can be extended and developed in several 
directions. Investigating whether there is an 
absolute or parametric upper bound on the 
Cheeger constant of the graph for it to have 
modularity will be an interesting abstract 
problem. Our first result, that nontrivial 
minimal Cheeger sets must be internally 
connected, may have wider applications than 
study of modularity. Moreover, the particular 
technique is a contribution. What is the 
quantitative relation between bounds on the 
Cheeger constant and on the minimum 
cardinality of a minimal Cheeger set for 
modularity is also an interesting question. 
 
 

The techniques used in this work are mainly 
combinatorial, but the use of finiteness and 
discreteness is minimal, and exploring how or 
when these results are applicable to infinite 
graphs or even uncountable relations 
(connecting the Cheeger numbers and 
inequalities to their original form -- 
isoperimetric inequalities on Riemannian 
manifolds) can be very productive. To some 
extent, Gauthier[2] explores this.  
 
We have not explored this here, though our 
techniques should be easily extensible to the 
infinite case. 
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